Устройство и принцип работы двигателя внутреннего сгорания

Эксплуатационные показатели в сравнении

Сопоставляя двухтактный двигатель и четырехтактный двигатель, разницу между ними можно заметить не только в устройстве, но и в эксплуатационных характеристиках. Сравнивать их можно по следующим показателям:

  • литровая мощность;
  • удельная мощность;
  • экономичность;
  • экологичность;
  • шумность;
  • ресурс работы;
  • простота обслуживания;
  • вес;
  • цена.

Литровой называется мощность, снимаемая с литра объёма цилиндра. Теоретически она должна быть в два раза больше у двухтактного. Однако на деле этот показатель составляет 1,5−1,8. Сказывается неполное использование рабочего хода газов, затраты энергии на продувку, неполное сгорание и потери топлива.

Удельная мощность представляет собой величину отношения мощности мотора к его весу. Она также выше у двухтактных. Для них нужен менее тяжёлый маховик и не нужны дополнительные системы (газораспределения и смазки), утяжеляющие конструкцию. КПД у них также выше.

Экологичность двухтактных ниже, опять-таки из-за потери несгоревшего топлива и масла. Убедиться в этом можно на примере двухтактного лодочного мотора. Он всегда оставляет на воде тонкую плёнку из несгоревшего топлива.

Шумность выше у двухтактных. Это связано с тем, что выхлопные газы из цилиндра вырываются с большой скоростью.

Ресурс работы выше у четырехтактных. Отдельная система смазки и меньшая оборотистость двигателя положительно сказываются на сроке его службы.

В некоторых механизмах применение двухтактных двигателей является однозначным. Это, например, бензопилы. Высокая удельная мощность, маленький вес и простота делают его здесь безусловным фаворитом.

Двухтактные двигатели используются также в мототехнике, лодочных моторах, газонокосилках, скутерах, авиамоделировании. В большинстве самодельных машин и механизмов умельцы также используют двухтактный мотор.

Суть изобретения Стирлинга

На схеме тепловой двигатель состоит из двух цилиндров компрессионного и рабочего. Левая и правая стороны удлиненного цилиндра разделены теплоизоляционной стенкой. Внутри ходит специальный вытеснительный поршень, который не соприкасается с боковыми стенками.

  1. К левой стороне устройства подводится тепло, к правой – охлаждение.
  2. Когда поршень движется влево, горячий воздух вытесняется в холодную правую зону и охлаждается.
  3. При этом газ уменьшается объеме.
  4. Рабочий поршень втягивается влево.
  5. При движении вытеснительного поршня вправо холодный воздух вытесняется в горячую зону, где нагревается и расширяется.
  6. Толкает рабочий поршень вправо.
  7. Рабочий и вытеснительный поршни связаны между собой через коленчатый вал с углом смещения 90 градусов.
  • электричество;
  • солнце;
  • ядерная энергия и пр.

Устройство ДВС

Конструктивно двигатели делят, с учетом устройства и компоновки техники, на которой они установлены. Но сохраняются неизменными принципы, одинаковые для конструкции любого ДВС.

Двигатель комплектуется такими конструктивными узлами:

  • блоком цилиндров – основной частью корпуса с проемами для рабочих камер, рубашкой охлаждения (для моторов, охлаждаемых жидкостью), крепежными отверстиями для установки головок и картера, посадочными местами для коленчатого вала и прочими конструктивными элементами;
  • кривошипно-шатунной группой – с коленчатым валом, к которому крепятся шатуны, приводящие в действие поршни, двигающиеся внутри цилиндров; инерция вращения поддерживается маховиком;
  • газораспределительным механизмом – системой, подающей в камеры сгорания топливо-воздушную смесь, с отводом выхлопа; включает распределительный вал, клапана, приводимые в действие коромыслами, ремнем или цепью, соединенными с коленвалом;
  • топливной системой – подает горючее в камеры сгорания, после обогащения воздухом; включает бак, систему трубок для подвода питающей жидкости, карбюратора или инжектора (с учетом особенностей конструктивного устройства), форсунок, насоса, фильтрующего элемента;
  • смазочной системой – с подачей смазки к трущимся деталям; включает масляный насос, приводящийся коленчатым валом, систему патрубков и полостей, фильтр и поддон; предусмотрено устройство «сухого» или «мокрого» картера;
  • системой зажигания – для поджигания топливно-воздушной смеси; используется только на бензиновых двигателях, поскольку на дизельных моторах топливо с воздухом воспламеняется самостоятельно, при определенном давлении;
  • системой охлаждения – может быть воздушной или жидкостной, для снижения температуры корпуса мотора, чтобы предупредить износ и выход из строя элементов;
  • электросистемой – источником электроэнергии, необходимой для работы мотора; включает аккумуляторную батарею, генераторный блок, стартер и проводку с датчиками;
  • системой выхлопа – для удаления продуктов сгорания в атмосферу, с доочисткой этой смеси, снижением шума от работы двигателя, фильтрующим элементом.

Конструкция узлов совершенствуется, по мере появления новых материалов и конструктивных решений.

С учетом особенностей конструктивного устройства различных элементов двигателей, важно учитывать такие моменты:

  • цилиндры могут выполняться отдельно, с запрессовкой в корпус блока, или совместно с корпусом; моноблочные системы не предусматривают восстановления, в связи с тем, что нельзя заменить гильзу;
  • корпуса двигателей изготавливают из сплавов чугуна или алюминия, устойчивых к перепадам температуры и высокому давлению;
  • головка блока цилиндров выполняется с ним совместно или в виде отдельной детали; при раздельном исполнении возможно использование разных материалов для головки и блока цилиндров;
  • работа кривошипно-шатунного механизма может уравновешиваться балансирными валами, расположенными по сторонам от коленвала и нивелирующими влияние инерционных сил; в результате снижается вибрация и шум, исключаются перегрузки двигателя;
  • негативное влияние пружин при быстрой работе двигателя с механическим газораспределительным механизмом снижается за счет десмодромной системы управления мотором – со сложной конфигурацией кулачков;
  • зависание клапанов исключается легкими материалами для изготовления этих деталей и пружинных элементов, пневматическим приводом;
  • альтернатива традиционной конструкции ГРМ – гильзовый способ, разработанный Найтом; предусматривает использование взамен клапанов скользящих гильз, работающих бесшумно и долговечно; этот способ перестали использовать по причинам большого расхода смазочной жидкости, с разработкой верхнеклапанной конструкции;
  • ранние модели двигателей комплектовались не стартерами, а генераторами переменного тока (магнето), приводимыми в действие коленчатым валом; это требовало прокручивания вала двигателя для запуска;
  • вредное воздействие на экологию выхлопных газов частично снижается каталитическим нейтрализатором, окисляющим и химически преобразовывающим выхлоп;
  • электронные системы дополнительно улучшают работу двигателя; изменение фаз газораспределения изменяет нагрузку на мотор, с учетом включенной передачи, снижая потребление горючего; дезактивация цилиндров регулирует объем камер сжатия, отключая ненужные цилиндры; регулировка степени сжатия изменяет объем камер сгорания, с учетом режимов работы мотора.

Эти и другие особенности конструктивно улучшили работу двигателей внутреннего сгорания.

Двухтактные моторы

Помимо четырехтактных поршневых ДВС существуют двухтактные. Принцип их работы несколько отличается от описанного выше. Устройство такого мотора проще. В цилиндре имеется для окна – впускное и выпускное, расположенное выше. Поршень, находясь в НМТ, перекрывает впускное окно, затем, двигаясь вверх, перекрывает выпускное и сжимает рабочую смесь. По достижении им ВМТ на свече образуется искра и поджигает смесь. В это время впускное окно оказывается открытым, и через него в кривошипную камеру попадает очередная доза топливно-воздушной смеси.

Во время второго такта, двигаясь вниз под воздействием газов, поршень открывает выпускное окно, через которое отработавшие газы выдуваются из цилиндра новой порцией рабочей смеси, которая попадает в цилиндр через продувочный канал. Частично рабочая смесь при этом также уходит в выпускное окно, что объясняет прожорливость двухтактного ДВС.

Подобный принцип работы позволяет достичь большей мощности двигателя при меньшем рабочем объеме, однако за это приходится расплачиваться большим расходом топлива. К преимуществам таких моторов можно отнести более равномерную работу, простую конструкцию, малый вес и высокую удельную мощность. Из недостатков следует упомянуть более грязный выхлоп, отсутствие систем смазки и охлаждения, что грозит перегревом и выходом агрегата из строя.

Популярные статьи  Как проверить и заменить подушки двигателя

Мне нравится2Не нравится1

КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.

Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).

Рис. 1.2. Двигатель со снятой головкой блока цилиндров.

Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.

Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).

Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.

Рис. 1.3. Поршень с шатуном.

Рекомендуем: Обзор подходящих герметиков для системы охлаждения двигателя

На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).

Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.

Примечание.

Распределительный вал двигателя приводится в действие коленчатым валом.

Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).

При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.

Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.

Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.

По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.

Принцип работы двигателя

Во всех ДВС, какой бы конструкции они ни были, используется один и тот же принцип работы. Это преобразование энергии теплового расширения при сгорании топлива сначала в прямолинейное, а затем во вращательное движение.
Такты четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации

Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта)

Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

Watch this video on YouTube

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.

Работа четырехтактного двигателя

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется  большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.
Такты двухтактного двигателя

Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

  1. В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
  2. Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.
Популярные статьи  Система предаварийной безопасности автомобиля (PCS)

Работа двухтактного двигателя

Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Неполадки двигателя

Итак, одним прекрасным утром Вы садитесь в машину, а двигатель не заводится… Что же случилось? Теперь, когда Вы знакомы с принципом работы двигателя, Вы сможете разобраться с основными проблемами, которые мешают запуску двигателя. Три наиболее частые неполадки: плохая топливная смесь, недостаточная компрессия, отсутствие искры. Помимо вышеперечисленных, могут возникнуть тысячи других проблем, но мы остановимся на «большой тройке». Основываясь на простом двигателе, который мы описывали, мы расскажем о том, как эти проблемы могут повлиять на Ваш двигатель:
 Плохая топливная смесь — Данная проблема может возникнуть по нескольким причинам:
 

  • У Вас закончился бензин, поэтому в двигатель поступает только воздух без топлива.
  • У Вас забилось впускное отверстие воздуха, поэтому поступает только топливо.
  • Топливная система подает слишком много или мало топлива, в результате чего сгорание не происходит надлежащим образом.
  • Возможно, в топливе присутствуют примеси (например, в бензобак попала вода), которые препятствуют сгоранию.

 Недостаточная компрессия — Если топливно-воздушная смесь не будет сжата надлежащим образом, процесс сгорания будет проходить неправильно. Недостаточная компрессия может быть вызвана рядом причин:

  • Износ поршневых колец (топливно-воздушная смесь вытекает за пределы поршня в процессе сжатия).
  • Недостаточное уплотнение клапана впуска или выпуска, что опять же вызывает протечку.
  • В цилиндре имеются повреждения.

 Наиболее часто повреждение цилиндра происходит в его верхней части (на которой установлены клапаны, свеча зажигания и которая называется головка цилиндра) крепится к самому цилиндру. Обычно головка цилиндра крепится к самому цилиндру при помощи болтового соединения с использованием тонкой прокладки, которая обеспечивает качественное уплотнение.. При повреждении прокладки, между цилиндром и его головкой образуются небольшие отверстия, в результате чего происходят протечки.
 
Регулярное техническое обслуживание может помочь избежать ремонта
 Отсутствие искры — Искра может быть слишком слабой или отсутствовать вообще по следующим причинам:

  • При износе свечи зажигания или ее провода может наблюдаться слабая искра.
  • При повреждении или обрыве провода или система, передающая искру, не функционирует надлежащим образом, искра может отсутствовать.
  • Если искра подается слишком рано или поздно во время цикла (т.е. если регулировка зажигания отключена), воспламенение топлива не произойдет в нужный момент, что может повлечь к различным проблемам.

Могут возникнуть и другие неполадки. Например:

  • Если аккумулятор разряжен, Вы также не сможете завести двигатель.
  • Если подшипники, которые обеспечивают свободное вращение коленвала, изношены, коленвал не сможет вращаться, в результате чего двигатель не заведется.
  • Если открытие/закрытие клапанов не происходит в нужный момент и не происходит вообще, воздух не сможет поступать и выходить, что будет препятствовать работе двигателя.
  • Если кто-то засунет картофелину Вам в выхлопную трубу, выхлоп не будет выпущен из цилиндра, поэтому двигатель не заведется.
  • Если у Вас закончилось масло, поршень не сможет свободно двигаться в цилиндре, в результате чего двигатель заклинит.
  • В исправно работающем двигателе все эти факторы находятся в допустимых пределах.

Как Вы видите, в двигателе имеется несколько систем, которые обеспечивают преобразование энергии топлива в механическую энергию. В следующих разделах мы рассмотрим различные подсистемы, которые используются в двигателях.

Порядок работы двигателя

Итак, порядок работы цилиндров наиболее распространенных автомобильных двигателей отличается. Если сравнивать порядок работы однотипных 4, 6, а также 8 цилиндровых моторов, порядок работы цилиндров таких двигателей будет заметно отличаться. Другими словами, 4 цилиндровый двигатель и его цилиндры будут работать не в том порядке, в котором работает, например, 8-и цилиндровый аналог. Давайте разбираться.

Прежде всего, порядок работы цилиндров будет зависеть от чередования воспламенения топливной смеси в цилиндрах двигателя, а также угла чередования тактов. Так вот, рабочий цикл рядного четырехтактного мотора на 4 цилиндра проходит за 2 полных оборота коленчатого вала или же за 720 градусов. При этом чередование тактов осуществляется через 180 градусов.

Если же мотор 4-тактный, V-образный, 6-цилиндровый, рядный, рабочий цикл такого двигателя также проходит за 2 полных оборота коленвала или 720 градусов, однако чередование тактов осуществляется через 120 градусов. Рабочий цикл рядного 8-цилиндрового V-образного мотора получает чередование тактов через 90 градусов.

Более наглядно начнем рассмотрение с рядной четверки. Например, для таких ДВС распространен порядок 1-3-4-2 или 1-2-4-3. Другими словами, фактически, это и есть порядок зажигания двигателя. Если же рассматривать рядный 6-цилиднровый мотор, для рядной шестерки порядок 1-5-3-6-2-4.

Что касается V-образного 6- цилиндрового мотора, порядок работы такого агрегата 1-4-2-5-3-6. Кстати, такие моторы хуже всего сбалансированы (за исключением 5-и, 3 и 2-цилиндровых четырехтактных двигателей). Если же рассматривать двигатель V-8, такие моторы могут иметь 2 порядка работы: 1-5-4-2-6-3-7-8 или 1-8-4-3-6-5-7-2. На самом деле, такая разница связана с тем, что в США и Европе цилиндры считаются с определенными отличиями.

В США первый цилиндр (А/М по ходу движения) считается спереди слева. Затем цилиндры принято считать слева направо и спереди назад, то есть счет идет в шахматном порядке. В Европе первый цилиндр двигателя считается спереди справа по ходу движения А/М, после чего исчисление порядное спереди назад: 5 -1- 6 -2 -7 -3 -8 -4.

Если же рассмотреть двигатель V-12, тогда порядок работы следующий: 1-12-5-8-3-10-6-7-2-11-4-9. Кстати, если рассматривать мощные ДВС, на старых американских авто встречается рядный двигатель на 8 цилиндров. Так вот, его прядок работы: 1-4-7-3-8-5-2-6.

Как видно, такт двигателя и работа цилиндров на разных ДВС будет отличаться. По этой причине необходимо знать порядок цилиндров конкретного мотора (можно найти информацию в технической литературе). Такие знания позволяют упростить диагностику неисправностей в случае различных сбоев, неполадок в работе системы зажигания и т.д.

Дизельные двигатели

Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.

На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.

Сфера применения двигателей внешнего сгорания

В результате последующих усовершенствований конструкции мотора, газ нагревается/охлаждается при постоянном давлении в системе (вместо сохранения объема). Это изобретение инженера из Швеции по имени Эриксон, позволило создавать двигатели, предназначенные для использования работниками шахт, типографий, судов и пр. В пассажирских экипажах того времени тепловые двигатели не применялись, т. к. обладали сравнительно большим весом.

Устройство и принцип работы двигателя внутреннего сгорания

Двигатели внешнего сгорания часто использовались для приведения в действие генераторов в районах, где отсутствовала подача электроэнергии.

Самые распространенные виды двигателей

Существует три разновидности ДВС: поршневой, роторно-поршневой силовой агрегат системы Ванкеля и газотурбинный. За редким исключением на современные авто устанавливаются четырехтактные поршневые моторы. Причина кроется в низкой цене, компактности, малом весе, многотопливности и возможности установки практически на любые транспортные средства.

Устройство и принцип работы двигателя внутреннего сгорания
Сам по себе двигатель автомобиля – это механизм, преобразующий тепловую энергию горящего топлива в механическую, работу которого обеспечивает множество систем, узлов и агрегатов.

Четырехтактным мотор называется потому, что один рабочий цикл состоит из четырех движений поршня (тактов) или двух оборотов коленчатого вала:

  • впуск;
  • сжатие;
  • рабочий ход;
  • выпуск.

Устройство двигателя внутреннего сгорания

Несмотря на разнообразие типов и конструкций ДВС, принцип его устройства остается практически неизменным на любой технике. Конечно, отдельные элементы конструкции могут сильно отличаться на разных двигателях, но основные узлы и компоненты очень похожи между собой.

Итак, двигатель внутреннего сгорания состоит из таких конструктивных узлов.

  1. Блок цилиндров (БЦ) – «оболочка» ЦПГ и всего двигателя в целом, в том числе с рубашкой системы охлаждения.
    Блок цилиндров
  2. Кривошипно-шатунный механизм, он же КШМ – узел, в котором происходит преобразование прямолинейного движения поршня во вращательное. Состоит из коленвала, поршней, шатунов, маховика, а также подшипников скольжения (вкладышей), на которые опирается коленвал и крепления шатунов.
    Кривошипно-шатунный механизм: 1 — цилиндр; 2 — маховик; 3 — шатунный подшипник; 4 — коленчатый вал; 5 — колено; 6 — коренной подшипник; 7 — шатун.
  3. Газораспределительный механизм (ГРМ) – это система подачи в цилиндры топливно-воздушной смеси и отвода выхлопных газов. Состоит из распредвалов, клапанов с коромыслами или штангами, ремня ГРМ, благодаря которому вся система работает синхронно с оборотами коленвала.
    Газораспределительный механизм
  4. Система питания – это узел, в котором происходит подготовка топливно-воздушной смеси, которая затем подается в камеры сгорания. В зависимости от конструкции система подачи топлива может быть карбюраторной (одна форсунка на двигатель), инжекторной (форсунки установлены перед впускным клапаном каждого цилиндра), с непосредственным впрыском (форсунка установлена внутри камеры сгорания). Включает в себя топливный бак с фильтром и насосом, карбюратор (опционально), впускной коллектор, форсунки, ТНВД (в дизельных двигателях), воздухозаборника с воздушным фильтром.
    Система питания
  5. Система смазки двигателя – обеспечивает подачу смазки в каждый из узлов трения, а также на участки, требующие дополнительного охлаждения (например, на нижнюю часть поршней). Состоит из масляного насоса, подключенного к коленвалу, системы трубок и каналов, выходящих на пары трения, масляного фильтра, масляного поддона. В зависимости от конструкции различаются двигатели с «сухим» и «мокрым» картером. У первых емкость для сбора моторного масла расположена отдельно, во вторых – непосредственно под двигателем.
    Система смазки двигателя: 1 – масляный насос; 2 – пробка сливного отверстия картера; 3 – маслоприемник; 4 – редукционный клапан; 5 – отверстие для смазывания распределительных шестерен; 6 – датчик сигнальной лампы аварийного давления масла; 7 – датчик указателя давления масла; 8 – кран масляного радиатора; 9 – масляный радиатор; 10 – масляный фильтр.
  6. Система зажигания – нужна для поджига топливной смеси в камере сгорания. Применяется только на бензиновых двигателях, поскольку дизтопливо воспламеняется само от сжатия. Включает в себя свечи зажигания, высоковольтные провода, катушки зажигания, а также распределитель (трамблер) на двигателях старого типа. В современных моторах система зажигания обходится без трамблера и даже без проводов: используется конструкция «катушка на свече».
    Система зажигания двигателя: 1 – генератор; 2 – выключатель зажигания; 3 – распределитель зажигания; 4 – кулачок прерывателя; 5 – свечи зажигания; 6 – катушка зажигания; 7 – аккумуляторная батарея.
  7. Система охлаждения – заботится о поддержании заданной рабочей температуры двигателя. Жидкостная система охлаждения состоит из теплоносителя (охлаждающей жидкости, антифриза), рубашки охлаждения (сеть камер и каналов внутри блока цилиндров), теплообменника (радиатор охлаждения), водяного насоса и термостата.
    Система охлаждения
  8. Электросистема – это источники энергии, необходимой для старта двигателя и поддержания его работы. К электросистеме относится аккумуляторная батарея, генератор, стартер, проводка и датчики работы двигателя.
  9. Выхлопная система – отводит продукты сгорания из двигателя, выполняет функцию доочистки выхлопных газов, регулирует звук работы мотора. Состоит из выпускного коллектора, катализатора и сажевого фильтра (опционально), резонатора, глушителя.

Выхлопная система

Каждая их этих частей постепенно развивается и совершенствуется в зависимости от запросов времени. Стремление к росту мощности сменилось поиском самых надежных и долговечных решений, затем на первое место вышла экономия топлива, а сегодня – забота о природе.

?История создания

До появления ДВС самоходные машины оснащались двигателями внешнего сгорания. Работали такие агрегаты от давления пара, образующегося в результате нагрева воды в отдельном резервуаре.

Конструкция таких двигателей была габаритной и малоэффективной – помимо большого веса установки для преодоления больших расстояний транспорту нужно было тянуть за собой еще и приличный запас топлива (уголь или дрова).

Ввиду такого недостатка инженеры и изобретатели пытались решить важный вопрос: как совместить топливо с телом силового агрегата. За счет удаления из системы таких элементов, как котел, резервуар для воды, конденсатор, испаритель, насос и т.д. можно было значительно снизить вес мотора.

Создание двигателя внутреннего сгорания в привычном для современного автомобилиста виде происходило постепенно. Вот основные вехи, приведшие к появлению современного ДВС:

1791г. Джон Барбер изобретает газовую турбину, которая функционировала на основании процесса «перегонки» нефти, угля и древесины в ретортах. Полученный газ вместе с воздухом нагнетался компрессором в камеру сгорания. Образовавшийся горячий газ под давлением подавался на крыльчатку рабочего колеса, и вращал его.
1794г. Роберт Стрит патентует жидкотопливный двигатель.
1799г. Филипп Лебон в результате пиролиза нефти получает светильный газ. В 1801 году предлагает использовать его в качестве топлива для газовых двигателей.
1807г. Франсуа Исаак де Риваз – патент об «использовании взрывающихся материалов, как источника энергии в двигателях». На основании разработки создает «Самодвижущийся экипаж».
1860г. Этьен Ленуар впервые воплотил в реальность ранние изобретения, создав работоспособный мотор, работающий от смеси светильного газа и воздуха. Механизм приводился в движение при помощи искры от внешнего источника питания. Изобретение применялось на лодках, но на самоходных машинах не устанавливалось.
1861г

Альфонс Бо Де Роша раскрывает важность сжатия топлива перед его воспламенением, что послужило для создания теории работы четырехтактного двс (всасывание, сжатие, горение вместе с расширением и выпуск).
1877г. Николаус Отто создает первый четырехтактный ДВС мощностью в 12 л.с.
1879г

Карл Бенц патентует двухтактный мотор.
1880-е годы. Огнеслав Кострович, Вильгельм Майбах и Готлиб Даймлер параллельно разрабатывают карбюраторные модификации двс, подготавливая их к серийному производству.

Помимо моторов, работающих на бензиновом топливе, в 1899 году появляется «Тринклер-мотор». Данное изобретение – еще одна разновидность двс (бескомпрессорный нефтяной двигатель высокого давления), работающая по принципу изобретения Рудольфа Дизеля. С годами силовые агрегаты, как бензиновые, так и дизельные, совершенствовались, что повышало их КПД.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: